The Laser Plasma: Basic Phenomena and Laws
ثبت نشده
چکیده
High power lasers when focused onto matter lead to extremely rapid ionization by direct photoeffect or, depending on wavelength and material, by multiphoton processes. When a sufficient number of free electrons is created the formation of a dense, highly ionized plasma is more efficiently continued by electron–neutrals and electron–ion impact ionization. In view of many important applications the generation of a homogeneous high density and, at the same time, very hot plasma would be most desirable. Unfortunately, at present high power lasers operate in the near infrared domain. As a consequence, direct interaction of the laser beam with matter is possible only below a limiting density, the so-called critical density which, at nonrelativistic intensities, is typically a hundred times lower than solid density. Only when the oscillatory velocity of the electrons becomes relativistic at laser intensities beyond 1018 Wcm−2 direct interaction with higher densities takes place. It is due to this cut-off that the plasma production process becomes a very dynamic interplay between laser beam stopping and plasma expansion and makes the plasmas created by lasers from overdense matter very inhomogeneous and short-living. Within certain limits efficient energy transfer from the laser to overdense plasma regions is made possible by electron thermal conduction. As there are physical limits inherent in this process also energy transfer to more dense matter is accomplished by shock wave heating and UV and X radiation from the moderately dense plasma. The dynamics of plasma formation and heating is best understood on the basis of elementary processes induced in atoms and on the electrons by the laser beam. Hence, first, elements of the motion of a single electron in the electromagnetic field and its collisions with atoms and ions are presented. The charged particles lead to collective fields which in turn act back on the single particles. These processes are described in the simplest way by the conservation equations of charge, momentum, and energy of the two-fluid plasma model. Owing to the high mobility of the electrons and ions under intense laser irradiation such a hydrodynamic description in terms of averaged quantities, density, flow velocity, temperature, averaged electric and magnetic fields, can never be the full truth. On the other hand there is its conceptual simplicity which makes of it a very powerful instrument for describing phenomena, even in regions where its validity is questionable. In the following sections of this chapter the basic concepts of collisional heating and quasineutrality are introduced and the basic building blocks of laser-plasma dynamics, linear plasma
منابع مشابه
شبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملInfluence of shielding gas composition on weld profile in pulsed Nd:YAG laser welding of low carbon steel
Weld area and weld depth/width ratio can be considered to be of the most important geometrical factors in pulsed laser welding. The effects of carbon dioxide and oxygen additions to the argon shielding gas on the weld properties in pulsed laser welding of low carbon steel is investigated. Presence of carbon dioxide and oxygen up to 10 and 15 percent respectively decreases the weld geometrical f...
متن کاملConvective drying of atmospheric pressure cold plasma pretreatment saffron stigmas: kinetic modeling
In this study, the drying kinetics of saffron stigmas pretreated by atmospheric pressure cold plasma pretreatment (15, 30, 45 and 60 s) followed by hot air drying (60°C and 1.5 m/s) were modeled using 10 conventional mathematical thin layer models. The use of cold plasma pretreatment reduced drying time and enhanced effective moisture diffusivity (Deff). The most accurate models describing beha...
متن کاملOn the Origin of Super-Hot Electrons in Intense Laser-Plasma Interactions
Over the last decade, laser facilities with peak intensity I > 5 ∗ 10 W cm2 have pushed the limits of ion acceleration [1], x-ray generation [2], and laboratory astrophysics [3] to exciting new extremes. The essential element for all of these phenomena is the population of relativistic electrons produced by the laser-plasma interaction (LPI), often in the preformed plasma created by amplified s...
متن کاملStudy of laser ablation using nano-second laser pulses
In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model ...
متن کامل